LEFT SEMI-BRACES AND SOLUTIONS TO THE YANG-BAXTER EQUATION

Arne Van Antwerpen (joint work w. Eric Jespers)

1

YANG-BAXTER AND ALGEBRAIC STRUCTURES

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r : X \times X \longrightarrow X \times X$ a function such that (on X^3)

$$\left(\mathsf{id}_X \times r\right)\left(r \times \mathsf{id}_X\right)\left(\mathsf{id}_X \times r\right) = \left(r \times \mathsf{id}_X\right)\left(\mathsf{id}_X \times r\right)\left(r \times \mathsf{id}_X\right).$$

For further reference, denote $r(x, y) = (\lambda_x(y), \rho_y(x))$.

YANG-BAXTER AND ALGEBRAIC STRUCTURES

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r : X \times X \longrightarrow X \times X$ a function such that (on X^3)

$$\left(\mathsf{id}_X \times r\right)\left(r \times \mathsf{id}_X\right)\left(\mathsf{id}_X \times r\right) = \left(r \times \mathsf{id}_X\right)\left(\mathsf{id}_X \times r\right)\left(r \times \mathsf{id}_X\right).$$

For further reference, denote $r(x, y) = (\lambda_x(y), \rho_y(x))$.

Definition

A set-theoretic solution (X, r) is called

- ▶ left (resp. right) non-degenerate, if λ_x (resp. ρ_y) is bijective,
- non-degenerate, if it is both left and right non-degenerate,
- involutive, if $r^2 = id_{X \times X}$.

BRACES AND GENERALIZATIONS

Definition (Rump(1), CJO, GV (2))

A triple (A, \cdot, \circ) is called a skew left brace, if (A, \cdot) is a group and (A, \circ) is a group such that for any $a, b, c \in A$,

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c),$$

where a^{-1} denotes the inverse of *a* in (A, \cdot) . In particular, if (A, \cdot) is an abelian group, then (A, \cdot, \circ) is called a left brace.

BRACES AND GENERALIZATIONS

Definition

A group (A, \cdot) with additional group structure (A, \circ) such that

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c).$$

Definition (Catino, Colazzo, Stefanelli (3))

A triple (B, \cdot, \circ) is called a left cancellative left semi-brace, if (B, \cdot) is a left cancellative semi-group and (B, \circ) is a group such that for any $a, b, c \in B$,

$$a \circ (b \cdot c) = (a \circ b) \cdot (a \circ (\overline{a} \cdot c)),$$

where \overline{a} denotes the inverse of *a* in (B, \circ) .

STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

$$M(X,r) = \left\langle x \in X \mid xy = \lambda_x(y)\rho_y(x) \right\rangle,$$

is called the structure monoid of (X, r).

STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

$$M(X,r) = \langle x \in X \mid xy = \lambda_x(y)\rho_y(x) \rangle,$$

is called the structure monoid of (X, r). The group G(X, r) generated by the same presentation is called the structure group of (X, r).

FROM YB TO BRACES

Theorem (ESS, LYZ, S, GV)

Let (X, r) be a non-degenerate solution to YBE, then there exists a unique skew left brace structure on G(X, r) such that the associated solution r_G satisfies

 $\mathbf{r}_{\mathsf{G}}(i\times i)=(i\times i)\mathbf{r},$

where $i: X \rightarrow G(X, r)$ is the canonical map.

FROM YB TO BRACES

Theorem (ESS, LYZ, S, GV)

Let (X, r) be a non-degenerate solution to YBE, then there exists a unique skew left brace structure on G(X, r) such that the associated solution r_G satisfies

$$\mathbf{r}_{\mathsf{G}}(i\times i)=(i\times i)\mathbf{r},$$

where $i : X \to G(X, r)$ is the canonical map. Moreover, if (X, r) is involutive, then G(X, r) is a left brace and

$$r_{\rm G}|_{X\times X}=r.$$

FROM BRACES TO YB

Definition

Let (B, \cdot, \circ) be a skew left brace. Define $\lambda_a(b) = a^{-1}(a \circ b)$ and $\rho_b(a) = \overline{(\overline{a} \cdot b)} \circ b$. Then, $r_B(a, b) = (\lambda_a(b), \rho_a(b))$ is a bijective non-degenerate solution to YB.

FROM BRACES TO YB

Definition

Let (B, \cdot, \circ) be a skew left brace. Define $\lambda_a(b) = a^{-1}(a \circ b)$ and $\rho_b(a) = \overline{(\overline{a} \cdot b)} \circ b$. Then, $r_B(a, b) = (\lambda_a(b), \rho_a(b))$ is a bijective non-degenerate solution to YB. Moreover, if (B, \cdot, \circ) is a left brace, then r_B is involutive.

LEFT SEMI-BRACES

Definition

Let (B, \cdot, \circ) be a triple such that (B, \cdot) is a semi-group and (B, \circ) is a group. If, for any $a, b, c \in B$, it holds that

$$a \circ (b \cdot c) = (a \circ b) \cdot (a \circ (\overline{a} \cdot c)),$$

then this triple is called a left semi-brace.

LEFT SEMI-BRACES

Definition

Let (B, \cdot, \circ) be a triple such that (B, \cdot) is a semi-group and (B, \circ) is a group. If, for any $a, b, c \in B$, it holds that

$$a \circ (b \cdot c) = (a \circ b) \cdot (a \circ (\overline{a} \cdot c)),$$

then this triple is called a left semi-brace.

Moreover, if (B, \cdot) is left cancellative, then (B, \cdot, \circ) is called a left cancellative left semi-brace. This is a left semi-brace in the sense of Catino, Colazzo and Stefanelli.

COMPLETELY SIMPLE

Definition

Let *G* be a group, *I*, *J* sets and $P = (p_{ji})$ a $|J| \times |I|$ -matrix with entries in *G*. Then

$$\mathcal{M}(G, I, J, P) = \{(g, i, j) \mid g \in G, i \in I, j \in J\},\$$

is called the Rees matrix semi-group associated to (G, I, J, P), where multiplication is defined as $(g, i, j)(h, k, l) = (gp_{ik}h, i, l)$.

COMPLETELY SIMPLE

Definition

Let *G* be a group, *I*, *J* sets and $P = (p_{ji})$ a $|J| \times |I|$ -matrix with entries in *G*. Then

$$\mathcal{M}(G, I, J, P) = \{(g, i, j) \mid g \in G, i \in I, j \in J\},\$$

is called the Rees matrix semi-group associated to (G, I, J, P), where multiplication is defined as $(g, i, j)(h, k, l) = (gp_{ik}h, i, l)$.

Theorem

Let S be a finite semi-group such that S has no non-trivial ideals and every idempotent of S is primitive (i.e. S is completely simple), then S is isomorphic to a Rees matrix semi-group. Conversely, every finite Rees matrix semi-group satisfies these conditions.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}(G, I, J, \mathcal{I}_{J,I})$, where $\mathcal{I}_{J,I}$ is the J × I-matrix where every entry is 1. Furthermore, (G, \cdot, \circ) is a skew left brace.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}(G, I, J, \mathcal{I}_{J,I})$, where $\mathcal{I}_{J,I}$ is the J × I-matrix where every entry is 1. Furthermore, (G, \cdot, \circ) is a skew left brace.

Proposition

Let (B, \cdot, \circ) be a left semi-brace. Then, the map $\lambda_a : B \to B : b \mapsto a \circ (\overline{a}b)$ is an endomorphism of (B, \cdot) . Furthermore, $\lambda : (B, \circ) \to \text{End}(B, \cdot)$ is a semi-group morphism.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}(G, I, J, \mathcal{I}_{J,I})$, where $\mathcal{I}_{J,I}$ is the J × I-matrix where every entry is 1. Furthermore, (G, \cdot, \circ) is a skew left brace.

Proposition

Let (B, \cdot, \circ) be a left semi-brace. Then, the map $\lambda_a : B \to B : b \mapsto a \circ (\overline{a}b)$ is an endomorphism of (B, \cdot) . Furthermore, $\lambda : (B, \circ) \to \text{End}(B, \cdot)$ is a semi-group morphism. Define for any $a, b \in B$, the map $\rho_b(a) = \overline{(\overline{a}b)} \circ b$.

THE ρ -CONDITION AND SOLUTIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. If $\rho : (B, \circ) \to Map(B, B)$ is a semi-group anti-morphism, then $r_B(a, b) = (\lambda_a(b), \rho_b(a))$ is a set-theoretic solution to YB.

Not every left semi-brace satisfies this condition. However, is ρ -condition necessary?

THE CONDITION IN EQUATIONS

PropositionLet (B, \cdot, \circ) be a left semi-brace. TFAE(1) $\rho : (B, \circ) \longrightarrow Map(B, B)$ is an anti-homomorphism.(2) $c (a \circ (1_{\circ}b)) = c (a \circ b)$ for all $a, b, c \in B$.

THE CONDITION IN EQUATIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. TFAE

- (1) $\rho: (B, \circ) \longrightarrow Map(B, B)$ is an anti-homomorphism.
- (2) $c(a \circ (1_{\circ}b)) = c(a \circ b)$ for all $a, b, c \in B$.
- (3) (B, \cdot) is completely simple and, for any $(g, i, j) \in B$ and $(1, k, l) \in E(B)$, if $(h, r, s) = (g, i, j) \circ (1, k, l)$, then h = g.

THE CONDITION IN EQUATIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. TFAE

- (1) $\rho: (B, \circ) \longrightarrow Map(B, B)$ is an anti-homomorphism.
- (2) $c(a \circ (1_{\circ}b)) = c(a \circ b)$ for all $a, b, c \in B$.
- (3) (B, \cdot) is completely simple and, for any $(g, i, j) \in B$ and $(1, k, l) \in E(B)$, if $(h, r, s) = (g, i, j) \circ (1, k, l)$, then h = g.

Moreover, in these cases, the idempotents E(B) form a left subsemi-brace as well as the idempotents $E(B1_{\circ})$ of the left subsemi-brace $B1_{\circ}$.

THE CONDITION IN STRUCTURE

Theorem

Let (B, \cdot, \circ) be a left semi-brace. The following conditions are equivalent.

- 1. ρ is an anti-homomorphism,
- 2. $B \cong (1_{\circ}B1_{\circ} \bowtie E(B1_{\circ}))) \bowtie E(1_{\circ}B)$ and E(B) is a left subsemi-brace of B.

ALGEBRA OF STRUCTURE MONOID

Proposition

Let (B, \cdot, \circ) be a left semi-brace such that ρ is an anti-homomorphism. Then, for any field K, the algebra KM(B) is generated as a left (and right) KM(1_oB1_o)-module by (1_oB) * (B1_o).

ALGEBRA OF STRUCTURE MONOID

Proposition

Let (B, \cdot, \circ) be a left semi-brace such that ρ is an anti-homomorphism. Then, for any field K, the algebra KM(B) is generated as a left (and right) KM(1_oB1_o)-module by (1_oB) * (B1_o).

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace such that ρ is an anti-homomorphism. Then, KM(B) is a Noetherian, PI-algebra of finite Gelfand-Kirillov dimension equal to that of $KM(1_{\circ}B1_{\circ})$. In particular, this dimension is at most $|1_{\circ}B1_{\circ}|$ and it is precisely equal to $|1_{\circ}B1_{\circ}|$ if B is a left brace.

1. W.Rump. Braces, radical rings, and the quantum Yang–Baxter equation. Journal of Algebra 307 (2007).

- 1. W.Rump. Braces, radical rings, and the quantum Yang–Baxter equation. Journal of Algebra 307 (2007).
- 2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).

- 1. W.Rump. Braces, radical rings, and the quantum Yang–Baxter equation. Journal of Algebra 307 (2007).
- 2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
- 3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).

- 1. W.Rump. Braces, radical rings, and the quantum Yang–Baxter equation. Journal of Algebra 307 (2007).
- 2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
- 3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).
- V.Lebed and L.Vendramin. On structure groups of set-theoretic solutions to the Yang-Baxter equation. Proc. Edinburgh Math. Soc. (2018).

- 1. W.Rump. Braces, radical rings, and the quantum Yang–Baxter equation. Journal of Algebra 307 (2007).
- 2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
- 3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).
- 4. V.Lebed and L.Vendramin. On structure groups of set-theoretic solutions to the Yang-Baxter equation. Proc. Edinburgh Math. Soc. (2018).
- E.Jespers and A.Van Antwerpen. Left semi-braces and solutions to the Yang-Baxter equation. Forum Mathematicum 31 (2019).