LEFT SEMI-BRACES AND SOLUTIONS TO THE YANG-BAXTER EQUATION

Arne Van Antwerpen
(joint work w. Eric Jespers)

VRIJE
UNIVERSITEIT
BRUSSEL

YANG-BAXTER AND ALGEBRAIC STRUCTURES

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r: X \times X \longrightarrow X \times X$ a function such that (on X^{3})

$$
\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)=\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right) .
$$

For further reference, denote $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$.

YANG-BAXTER AND ALGEBRAIC STRUCTURES

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r: X \times X \longrightarrow X \times X$ a function such that (on X^{3})

$$
\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)=\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right) .
$$

For further reference, denote $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$.

Definition

A set-theoretic solution (X, r) is called

- left (resp. right) non-degenerate, if λ_{x} (resp. ρ_{y}) is bijective,
- non-degenerate, if it is both left and right non-degenerate,
- involutive, if $r^{2}=\mathrm{id}_{X \times X}$.

BRACES AND GENERALIZATIONS

Definition (Rump(1), CJO, GV (2))

A triple (A, \cdot, \circ) is called a skew left brace, if (A, \cdot) is a group and (A, \circ) is a group such that for any $a, b, c \in A$,

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c),
$$

where a^{-1} denotes the inverse of a in (A, \cdot). In particular, if (A, \cdot) is an abelian group, then (A, \cdot, \circ) is called a left brace.

BRACES AND GENERALIZATIONS

Definition

A group (A, \cdot) with additional group structure (A, \circ) such that

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c) .
$$

Definition (Catino, Colazzo, Stefanelli (3))
A triple (B, \cdot, \circ) is called a left cancellative left semi-brace, if (B, \cdot) is a left cancellative semi-group and (B, \circ) is a group such that for any $a, b, c \in B$,

$$
a \circ(b \cdot c)=(a \circ b) \cdot(a \circ(\bar{a} \cdot c)),
$$

where \bar{a} denotes the inverse of a in (B, \circ).

STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

$$
M(X, r)=\left\langle x \in X \mid x y=\lambda_{x}(y) \rho_{y}(x)\right\rangle,
$$

is called the structure monoid of (X, r).

STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the monoid

$$
M(X, r)=\left\langle x \in X \mid x y=\lambda_{x}(y) \rho_{y}(x)\right\rangle,
$$

is called the structure monoid of (X, r). The group $G(X, r)$ generated by the same presentation is called the structure group of (X, r).

FROM YB TO BRACES

Theorem (ESS, LYZ, S, GV)

Let (X, r) be a non-degenerate solution to YBE, then there exists a unique skew left brace structure on $G(X, r)$ such that the associated solution r_{G} satisfies

$$
r_{G}(i \times i)=(i \times i) r,
$$

where $i: X \rightarrow G(X, r)$ is the canonical map.

FROM YB TO BRACES

Theorem (ESS, LYZ, S, GV)

Let (X, r) be a non-degenerate solution to YBE, then there exists a unique skew left brace structure on $G(X, r)$ such that the associated solution r_{G} satisfies

$$
r_{G}(i \times i)=(i \times i) r,
$$

where $i: X \rightarrow G(X, r)$ is the canonical map. Moreover, if (X, r) is involutive, then $G(X, r)$ is a left brace and

$$
\left.r_{G}\right|_{X \times X}=r
$$

FROM BRACES TO YB

Definition

Let (B, \cdot, \circ) be a skew left brace. Define $\lambda_{a}(b)=a^{-1}(a \circ b)$ and $\rho_{b}(a)=(\bar{a} \cdot b) \circ b$. Then, $r_{B}(a, b)=\left(\lambda_{a}(b), \rho_{a}(b)\right)$ is a bijective non-degenerate solution to YB.

FROM BRACES TO YB

Definition

Let (B, \cdot, \circ) be a skew left brace. Define $\lambda_{a}(b)=a^{-1}(a \circ b)$ and $\rho_{b}(a)=(\bar{a} \cdot b) \circ b$. Then, $r_{B}(a, b)=\left(\lambda_{a}(b), \rho_{a}(b)\right)$ is a bijective non-degenerate solution to YB. Moreover, if (B, \cdot, \circ) is a left brace, then r_{B} is involutive.

LEFT SEMI-BRACES

Definition

Let (B, \cdot, \circ) be a triple such that (B, \cdot) is a semi-group and (B, \circ) is a group. If, for any $a, b, c \in B$, it holds that

$$
a \circ(b \cdot c)=(a \circ b) \cdot(a \circ(\bar{a} \cdot c)),
$$

then this triple is called a left semi-brace.

LEFT SEMI-BRACES

Definition

Let (B, \cdot, \circ) be a triple such that (B, \cdot) is a semi-group and (B, \circ) is a group. If, for any $a, b, c \in B$, it holds that

$$
a \circ(b \cdot c)=(a \circ b) \cdot(a \circ(\bar{a} \cdot c)),
$$

then this triple is called a left semi-brace.
Moreover, if (B, \cdot) is left cancellative, then (B, \cdot, \circ) is called a left cancellative left semi-brace. This is a left semi-brace in the sense of Catino, Colazzo and Stefanelli.

COMPLETELY SIMPLE

Definition

Let G be a group, I, J sets and $P=\left(p_{j i}\right)$ a $|J| \times|I|$-matrix with entries in G. Then

$$
\mathcal{M}(G, I, J, P)=\{(g, i, j) \mid g \in G, i \in I, j \in J\},
$$

is called the Rees matrix semi-group associated to (G, I, J, P), where multiplication is defined as $(g, i, j)(h, k, l)=\left(g p_{j k} h, i, I\right)$.

COMPLETELY SIMPLE

Definition

Let G be a group, I, J sets and $P=\left(p_{j i}\right)$ a $|J| \times|I|$-matrix with entries in G. Then

$$
\mathcal{M}(G, I, J, P)=\{(g, i, j) \mid g \in G, i \in I, j \in J\},
$$

is called the Rees matrix semi-group associated to (G, I, J, P), where multiplication is defined as $(g, i, j)(h, k, I)=\left(g p_{j k} h, i, I\right)$.

Theorem

Let S be a finite semi-group such that S has no non-trivial ideals and every idempotent of S is primitive (i.e. S is completely simple), then S is isomorphic to a Rees matrix semi-group. Conversely, every finite Rees matrix semi-group satisfies these conditions.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}\left(G, I, J, \mathcal{I}_{J, I}\right)$, where $\mathcal{I}_{J, I}$ is the $J \times I$-matrix where every entry is 1 . Furthermore, (G, \cdot, \circ) is a skew left brace.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}\left(G, I, J, \mathcal{I}_{J, I}\right)$, where $\mathcal{I}_{J, I}$ is the $J \times I$-matrix where every entry is 1 . Furthermore, (G, \cdot, \circ) is a skew left brace.

Proposition

Let (B, \cdot, \circ) be a left semi-brace. Then, the map
$\lambda_{a}: B \rightarrow B: b \mapsto a \circ(\bar{a} b)$ is an endomorphism of (B, \cdot).
Furthermore, $\lambda:(B, \circ) \rightarrow \operatorname{End}(B, \cdot)$ is a semi-group morphism.

FINITE SEMI-BRACES

Theorem

Let (B, \cdot, \circ) be a finite left semi-brace. Then (B, \cdot) is completely simple. Moreover, there exists a finite group G and finite sets I, J such that $(B, \cdot) \cong \mathcal{M}\left(G, I, J, \mathcal{I}_{J, I}\right)$, where $\mathcal{I}_{J, I}$ is the $J \times I$-matrix where every entry is 1 . Furthermore, (G, \cdot, \circ) is a skew left brace.

Proposition

Let (B, \cdot, \circ) be a left semi-brace. Then, the map
$\lambda_{a}: B \rightarrow B: b \mapsto a \circ(\bar{a} b)$ is an endomorphism of (B, \cdot).
Furthermore, $\lambda:(B, \circ) \rightarrow \operatorname{End}(B, \cdot)$ is a semi-group morphism.
Define for any $a, b \in B$, the map $\rho_{b}(a)=\overline{(\bar{a} b)} \circ b$.

THE ρ-CONDITION AND SOLUTIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. If $\rho:(B, \circ) \rightarrow \operatorname{Map}(B, B)$ is a semi-group anti-morphism, then $r_{B}(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)$ is a set-theoretic solution to $Y B$.

Not every left semi-brace satisfies this condition. However, is ρ-condition necessary?

THE CONDITION IN EQUATIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. TFAE
(1) $\rho:(B, \circ) \longrightarrow \operatorname{Map}(B, B)$ is an anti-homomorphism.
(2) $c(a \circ(1, b))=c(a \circ b)$ for all $a, b, c \in B$.

THE CONDITION IN EQUATIONS

Proposition

Let (B, \cdot, \circ) be a left semi-brace. TFAE
(1) $\rho:(B, \circ) \longrightarrow \operatorname{Map}(B, B)$ is an anti-homomorphism.
(2) $c(a \circ(1, b))=c(a \circ b)$ for all $a, b, c \in B$.
(3) (B, \cdot) is completely simple and, for any $(g, i, j) \in B$ and $(1, k, l) \in E(B)$, if $(h, r, s)=(g, i, j) \circ(1, k, l)$, then $h=g$.

THE CONDITION IN EQUATIONS

Proposition

Let (B, \cdot, o) be a left semi-brace. TFAE
(1) $\rho:(B, \circ) \longrightarrow \operatorname{Map}(B, B)$ is an anti-homomorphism.
(2) $c(a \circ(1 \circ b))=c(a \circ b)$ for all $a, b, c \in B$.
(3) (B, \cdot) is completely simple and, for any $(g, i, j) \in B$ and $(1, k, l) \in E(B)$, if $(h, r, s)=(g, i, j) \circ(1, k, l)$, then $h=g$.
Moreover, in these cases, the idempotents $E(B)$ form a left subsemi-brace as well as the idempotents $E\left(B 1_{\circ}\right)$ of the left subsemi-brace $B 1_{\circ}$.

THE CONDITION IN STRUCTURE

Theorem

Let (B, \cdot, \circ) be a left semi-brace. The following conditions are equivalent.

1. ρ is an anti-homomorphism,
2. $\left.B \cong\left(1_{\circ} B 1_{\circ} \bowtie E\left(B 1_{\circ}\right)\right)\right) \bowtie E\left(1_{\circ} B\right)$ and $E(B)$ is a left subsemi-brace of B.

ALGEBRA OF STRUCTURE MONOID

Proposition

Let (B, \cdot, \circ) be a left semi-brace such that ρ is an anti-homomorphism. Then, for any field K, the algebra $K M(B)$ is generated as a left (and right) $K M\left(1_{\circ} B 1_{\circ}\right)$-module by $\left(1_{\circ} B\right) *\left(B 1_{\circ}\right)$.

ALGEBRA OF STRUCTURE MONOID

Proposition

Let (B, \cdot, \cdot) be a left semi-brace such that ρ is an anti-homomorphism. Then, for any field K, the algebra $K M(B)$ is generated as a left (and right) $K M\left(1_{\circ} B 1_{\circ}\right)$-module by $\left(1_{\circ} B\right) *\left(B 1_{\circ}\right)$.

Theorem
Let (B, \cdot, \circ) be a finite left semi-brace such that ρ is an anti-homomorphism. Then, $K M(B)$ is a Noetherian, Pl -algebra of finite Gelfand-Kirillov dimension equal to that of $K M\left(1_{o} B 1_{\circ}\right)$. In particular, this dimension is at most $\left|1_{0} B 1_{0}\right|$ and it is precisely equal to $\left|1_{0} B 1_{0}\right|$ if B is a left brace.

REFERENCES

1. W.Rump. Braces, radical rings, and the quantum

Yang-Baxter equation. Journal of Algebra 307 (2007).

REFERENCES

1. W.Rump. Braces, radical rings, and the quantum Yang-Baxter equation. Journal of Algebra 307 (2007).
2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).

REFERENCES

1. W.Rump. Braces, radical rings, and the quantum Yang-Baxter equation. Journal of Algebra 307 (2007).
2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).

REFERENCES

1. W.Rump. Braces, radical rings, and the quantum Yang-Baxter equation. Journal of Algebra 307 (2007).
2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).
4. V.Lebed and L.Vendramin. On structure groups of set-theoretic solutions to the Yang-Baxter equation. Proc. Edinburgh Math. Soc. (2018).

REFERENCES

1. W.Rump. Braces, radical rings, and the quantum Yang-Baxter equation. Journal of Algebra 307 (2007).
2. L.Guarnieri and L.Vendramin. Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017).
3. F.Catino, I.Colazzo and P.Stefanelli. Semi-braces and the Yang-Baxter equation. Journal of Algebra 483 (2017).
4. V.Lebed and L.Vendramin. On structure groups of set-theoretic solutions to the Yang-Baxter equation. Proc. Edinburgh Math. Soc. (2018).
5. E.Jespers and A.Van Antwerpen. Left semi-braces and solutions to the Yang-Baxter equation. Forum Mathematicum 31 (2019).
